
Xilinx Standalone Library
Documentation

LwIP 2.1.1 Library

UG650 (v2021.1) June 16, 2021

https://www.xilinx.com

Table of Contents
Chapter 1: Introduction.. 3

Features..3
References..4

Chapter 2: Using lwIP... 5
Overview...5
Setting up the Hardware System.. 5
Setting up the Software System.. 6

Chapter 3: LwIP Library APIs..16
Raw API...16
Socket API...17
Using the Xilinx Adapter Helper Functions.. 19

Appendix A: Additional Resources and Legal Notices............................. 23
Xilinx Resources...23
Documentation Navigator and Design Hubs...23
Please Read: Important Legal Notices... 24

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=2

Chapter 1

Introduction
The lwIP is an open source TCP/IP protocol suite available under the BSD license. The lwIP is a
standalone stack; there are no operating systems dependencies, although it can be used along
with operating systems. The lwIP provides two A05PIs for use by applications:

• RAW API: Provides access to the core lwIP stack.

• Socket API: Provides a BSD sockets style interface to the stack.

The lwip211_v1.5 is built on the open source lwIP library version 2.1.1. The lwip211 library
provides adapters for the Ethernetlite (axi_ethernetlite), the TEMAC (axi_ethernet), and the
Gigabit Ethernet controller and MAC (GigE) cores. The library can run on MicroBlaze™, Arm®

Cortex-A9, Arm Cortex®-A53, Arm Cortex-A72, and Arm Cortex-R5F processors. The
Ethernetlite and TEMAC cores apply for MicroBlaze systems. The Gigabit Ethernet controller and
MAC (GigE) core is applicable only for Arm Cortex-A9 system (Zynq®-7000 processor devices)
and Arm Cortex-A53 & Arm Cortex-R5F system (Zynq® UltraScale+™ MPSoC), and Arm Cortex-
A72 and Arm Cortex-R5F system (Versal™ ACAP).

Features
The lwIP provides support for the following protocols:

• Internet Protocol (IP)

• Internet Control Message Protocol (ICMP)

• User Datagram Protocol (UDP)

• TCP (Transmission Control Protocol (TCP)

• Address Resolution Protocol (ARP)

• Dynamic Host Configuration Protocol (DHCP)

• Internet Group Message Protocol (IGMP)

Chapter 1: Introduction

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=3

References
• FreeRTOS: http://www.freertos.org/Interactive_Frames/Open_Frames.html?http://
interactive.freertos.org/forums

• lwIP wiki: http://lwip.scribblewiki.com

• Xilinx® lwIP designs and application examples: http://www.xilinx.com/support/
documentation/application_notes/xapp1026.pdf

• lwIP examples using RAW and Socket APIs: http://savannah.nongnu.org/projects/lwip/

• FreeRTOS Port for Zynq is available for download from the [FreeRTOS][freertos] website

Chapter 1: Introduction

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 4Send Feedback

http://www.freertos.org/Interactive_Frames/Open_Frames.html?http://interactive.freertos.org/forums
http://www.freertos.org/Interactive_Frames/Open_Frames.html?http://interactive.freertos.org/forums
http://lwip.scribblewiki.com
http://www.xilinx.com/support/documentation/application_notes/xapp1026.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1026.pdf
http://savannah.nongnu.org/projects/lwip/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=4

Chapter 2

Using lwIP

Overview
The following are the key steps to use lwIP for networking:

1. Creating a hardware system containing the processor, ethernet core, and a timer. The timer
and ethernet interrupts must be connected to the processor using an interrupt controller.

2. Configuring lwip211_v1.5 to be a part of the software platform. For operating with lwIP
socket API, the Xilkernel library or FreeRTOS BSP is a prerequisite. See the Note below.

Note: The Xilkernel library is available only for MicroBlaze systems. For Cortex-A9 based systems (Zynq
devices), Cortex-A53 or Cortex-R5F based systems (Zynq UltraScale+ MPSoC), and Arm Cortex-A72 and
Arm Cortex-R5F system (Versal ACAP). There is no support for Xilkernel. Instead, use FreeRTOS. A
FreeRTOS BSP is available for Zynq, Zynq UltraScale+ MPSoC, and Versal systems and must be included
for using lwIP socket API. The FreeRTOS BSP for Zynq devices, Zynq UltraScale+ MPSoC, and Versal ACAP
is available for download from the FreeRTOS website.

Setting up the Hardware System
This section describes the hardware configurations supported by lwIP. The key components of
the hardware system include:

• Processor: Either a MicroBlaze or a Cortex-A9 or a Cortex-A53 or a Cortex-R5F processor or
a Cortex-A72. The Cortex-A9 processor applies to Zynq systems. The Cortex-A53 and Cortex-
R5F processors apply to Zynq UltraScale+ MPSoC systems. The Cortex-A72 and Cortex-R5F
processors apply to Versal ACAP systems.

• MAC: LwIP supports axi_ethernetlite, axi_ethernet, and Gigabit Ethernet controller and MAC
(GigE) cores.

• Timer: To maintain TCP timers, lwIP raw API based applications require that certain functions
are called at periodic intervals by the application. An application can do this by registering an
interrupt handler with a timer.

Chapter 2: Using lwIP

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 5Send Feedback

http://www.freertos.org/Interactive_Frames/Open_Frames.html?http://interactive.freertos.org/forums
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=5

• DMA: For axi_ethernet based systems, the axi_ethernet cores can be configured with a soft
DMA engine (AXI DMA and MCDMA) or a FIFO interface. For GigE-based Zynq devices, Zynq
UltraScale+ MPSoC, and Versal ACAP systems, there is a built-in DMA and so no extra
configuration is needed. Same applies to axi_ethernetlite based systems, which have their
built-in buffer management provisions.

The following figure shows a sample system architecture with a Kintex-6 device using the
axi_ethernet core with DMA.

Figure 1: System Architecture using axi_ethernet core with DMA

MDM MicroBlaze

BRAM

AXI_MM

AXI_Lite

AXI_BRAM

AXI_EMC

axi_s6_ddrx
Memory

Controller

Ethernet

SPI

IIC

GPIO(3x)

UART 16550

Timer

Interrupt
Controller

DMA

DMA
MM DMA

SG

Flash

Memory

GMII

Flash

EEPROM

PB/SW/LEDs

RS232

JT
AG

MBDEBUG

IC

DC

D-LMB I-LMB

DP

Arrow direction indicates AXI Master/Slave relationship
X24798-110920

Setting up the Software System
To use lwIP in a software application, you must first compile the lwIP library as a part of the
software application.

1. Click File > New > Platform Project.

2. Click Specify to create a new Hardware Platform Specification.

3. Provide a new name for the domain in the Project name field if you wish to override the
default value.

Chapter 2: Using lwIP

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=6

4. Select the location for the board support project files. To use the default location, as
displayed in the Location field, leave the Use default location check box selected. Otherwise,
deselect the checkbox and then type or browse to the directory location.

5. From the Hardware Platform drop-down choose the appropriate platform for your application
or click the New button to browse to an existing Hardware Platform.

6. Select the target CPU from the drop-down list.

7. From the Board Support Package OS list box, select the type of board support package to
create. A description of the platform types displays in the box below the drop-down list.

8. Click Finish. The wizard creates a new software platform and displays it in the Vitis Navigator
pane.

9. Select Project > Build Automatically to automatically build the board support package. The
Board Support Package Settings dialog box opens. Here you can customize the settings for
the domain.

10. Click OK to accept the settings, build the platform, and close the dialog box.

11. From the Explorer, double-click platform.spr file and select the appropriate domain/board
support package. The overview page opens.

12. In the overview page, click Modify BSP Settings.

13. Using the Board Support Package Settings page, you can select the OS Version and which of
the Supported Libraries are to be enabled in this domain/BSP.

14. Select the lwip211 library from the list of Supported Libraries.

15. Expand the Overview tree and select lwip211. The configuration options for the lwip211
library are listed.

16. Configure the lwip211 library and click OK.

Configuring lwIP Options
The lwIP library provides configurable parameters. There are two major categories of
configurable options:

• Xilinx Adapter to lwIP options: These control the settings used by Xilinx adapters for the
ethernet cores.

• Base lwIP options: These options are part of lwIP library itself, and include parameters for
TCP, UDP, IP and other protocols supported by lwIP. The following sections describe the
available lwIP configurable options.

Customizing lwIP API Mode
The lwip211_v1.5 supports both raw API and socket API:

Chapter 2: Using lwIP

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=7

• The raw API is customized for high performance and lower memory overhead. The limitation
of raw API is that it is callback-based, and consequently does not provide portability to other
TCP stacks.

• The socket API provides a BSD socket-style interface and is very portable; however, this mode
is not as efficient as raw API mode in performance and memory requirements. The
lwip211_v1.5 also provides the ability to set the priority on TCP/IP and other lwIP application
threads.

The following table describes the lwIP library API mode options.

Attribute Description Type Default
api_mode {RAW_API |
SOCKET_API}

The lwIP library mode of
operation

enum RAW_API

socket_mode_thread_prio Priority of lwIP TCP/IP thread
and all lwIP application
threads. This setting applies
only when Xilkernel is used
in priority mode. It is
recommended that all
threads using lwIP run at the
same priority level. For GigE
based Zynq-7000,
Zynq UltraScale+ MPSoC, and
Versal systems using
FreeRTOS, appropriate
priority should be set. The
default priority of 1 will not
give the expected behavior.
For FreeRTOS (Zynq-7000,
Zynq UltraScale+ MPSoC, and
Versal systems), all internal
lwIP tasks (except the main
TCP/IP task) are created with
the priority level set for this
attribute. The TCP/IP task is
given a higher priority than
other tasks for improved
performance. The typical
TCP/IP task priority is 1 more
than the priority set for this
attribute for FreeRTOS.

integer 1

use_axieth_on_zynq In the event that the
AxiEthernet soft IP is used on
a Zynq-7000 device or a
Zynq UltraScale+ MPSoC.
This option ensures that the
GigE on the Zynq-7000 PS
(EmacPs) is not enabled and
the device uses the
AxiEthernet soft IP for
Ethernet traffic. The existing
Xilinx-provided lwIP adapters
are not tested for multiple
MACs. Multiple Axi
Ethernet's are not supported
on Zynq UltraScale+ MPSoCs.

integer 0 = Use Zynq-7000 PS-based
or Zynq UltraScale+ MPSoC
PS-based GigE controller 1=
User AxiEthernet

Chapter 2: Using lwIP

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=8

Configuring Xilinx Adapter Options
The Xilinx adapters for EMAC/GigE cores are configurable.

Ethernetlite Adapter Options

The following table describes the configuration parameters for the axi_ethernetlite adapter.

Attribute Description Type Default
sw_rx_fifo_size Software Buffer Size in bytes

of the receive data between
EMAC and processor

integer 8192

sw_tx_fifo_size Software Buffer Size in bytes
of the transmit data between
processor and EMAC

integer 8192

TEMAC Adapter Options

The following table describes the configuration parameters for the axi_ethernet and GigE
adapters.

Attribute Type Description
n_tx_descriptors integer Number of TX descriptors to be used.

For high performance systems there
might be a need to use a higher value.
Default is 64.

n_rx_descriptors integer Number of RX descriptors to be used.
For high performance systems there
might be a need to use a higher value.
Typical values are 128 and 256. Default
is 64.

n_tx_coalesce integer Setting for TX interrupt coalescing.
Default is 1.

n_rx_coalesce integer Setting for RX interrupt coalescing.
Default is 1.

tcp_rx_checksum_offload boolean Offload TCP Receive checksum
calculation (hardware support
required). For GigE in Zynq devices,
Zynq UltraScale+ MPSoC, and Versal
ACAP, the TCP receive checksum
offloading is always present, so this
attribute does not apply. Default is
false.

tcp_tx_checksum_offload boolean Offload TCP Transmit checksum
calculation (hardware support
required). For GigE cores (Zynq devices,
Zynq UltraScale+ MPSoC, and Versal
ACAP), the TCP transmit checksum
offloading is always present, so this
attribute does not apply. Default is
false.

Chapter 2: Using lwIP

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=9

Attribute Type Description
tcp_ip_rx_checksum_ofload boolean Offload TCP and IP Receive checksum

calculation (hardware support
required). Applicable only for AXI
systems. For GigE in Zynq devices, Zynq
UltraScale+ MPSoC, and Versal ACAP,
the TCP and IP receive checksum
offloading is always present, so this
attribute does not apply. Default is
false.

tcp_ip_tx_checksum_ofload boolean Offload TCP and IP Transmit checksum
calculation (hardware support
required). Applicable only for AXI
systems. For GigE in Zynq, Zynq
UltraScale+ MPSoC, and Versal ACAP,
the TCP and IP transmit checksum
offloading is always present, so this
attribute does not apply. Default is
false.

phy_link_speed CONFIG_LINKSPEED_ AUTODETECT Link speed as auto-negotiated by the
PHY. lwIP configures the TEMAC/GigE
for this speed setting. This setting must
be correct for the TEMAC/GigE to
transmit or receive packets. The
CONFIG_LINKSPEED_ AUTODETECT
setting attempts to detect the correct
linkspeed by reading the PHY registers;
however, this is PHY dependent, and
has been tested with the Marvell and TI
PHYs present on Xilinx development
boards. For other PHYs, select the
correct speed. Default is enum.

temac_use_jumbo_
frames_experimental

boolean Use TEMAC jumbo frames (with a size
up to 9k bytes). If this option is
selected, jumbo frames are allowed to
be transmitted and received by the
TEMAC. For GigE in Zynq there is no
support for jumbo frames, so this
attribute does not apply. Default is
false.

Configuring Memory Options
The lwIP stack provides different kinds of memories. Similarly, when the application uses socket
mode, different memory options are used. All the configurable memory options are provided as a
separate category. Default values work well unless application tuning is required. The following
table describes the memory parameter options.

Chapter 2: Using lwIP

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=10

Attribute Default Type Description
mem_size 131072 Integer Total size of the heap

memory available, measured
in bytes. For applications
which use a lot of memory
from heap (using C library
malloc or lwIP routine
mem_malloc or pbuf_alloc
with PBUF_RAM option), this
number should be made
higher as per the
requirements.

memp_n_pbuf 16 Integer The number of memp struct
pbufs. If the application
sends a lot of data out of
ROM (or other static
memory), this should be set
high.

memp_n_udp_pcb 4 Integer The number of UDP protocol
control blocks. One per
active UDP connection.

memp_n_tcp_pcb 32 Integer The number of
simultaneously active TCP
connections.

memp_n_tcp_pcb _listen 8 Integer The number of listening TC
connections.

memp_n_tcp_seg 256 Integer The number of
simultaneously queued TCP
segments.

memp_n_sys_timeout 8 Integer Number of simultaneously
active timeouts.

memp_num_netbuf 8 Integer Number of allowed structure
instances of type netbufs.
Applicable only in socket
mode.

memp_num_netconn 16 Integer Number of allowed structure
instances of type netconns.
Applicable only in socket
mode.

memp_num_api_msg 16 Integer Number of allowed structure
instances of type api_msg.
Applicable only in socket
mode.

memp_num_tcpip_msg 64 Integer Number of TCPIP msg
structures (socket mode
only).

Note: Because Sockets Mode support uses Xilkernel services, the number of semaphores chosen in the
Xilkernel configuration must take the value set for the memp_num_netbuf parameter into account. For
FreeRTOS BSP there is no setting for the maximum number of semaphores. For FreeRTOS, you can create
semaphores as long as memory is available.

Chapter 2: Using lwIP

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=11

Configuring Packet Buffer (Pbuf) Memory Options
Packet buffers (Pbufs) carry packets across various layers of the TCP/IP stack. The following are
the pbuf memory options provided by the lwIP stack. Default values work well unless application
tuning is required. The following table describes the parameters for the Pbuf memory options.

Attribute Default Type Description
pbuf_pool_size 256 Integer Number of buffers in pbuf

pool. For high performance
systems, you might consider
increasing the pbuf pool size
to a higher value, such as
512.

pbuf_pool_bufsize 1700 Integer Size of each pbuf in pbuf
pool. For systems that
support jumbo frames, you
might consider using a pbuf
pool buffer size that is more
than the maximum jumbo
frame size.

pbuf_link_hlen 16 Integer Number of bytes that should
be allocated for a link level
header.

Configuring ARP Options
The following table describes the parameters for the ARP options. Default values work well
unless application tuning is required.

Attribute Default Type Description
arp_table_size 10 Integer Number of active hardware

address IP address pairs
cached.

arp_queueing 1 Integer If enabled outgoing packets
are queued during hardware
address resolution. This
attribute can have two
values: 0 or 1.

Configuring IP Options
The following table describes the IP parameter options. Default values work well unless
application tuning is required.

Chapter 2: Using lwIP

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=12

Attribute Default Type Description
ip_forward 0 Integer Set to 1 for enabling ability

to forward IP packets across
network interfaces. If
running lwIP on a single
network interface, set to 0.
This attribute can have two
values: 0 or 1.

ip_options 0 Integer When set to 1, IP options are
allowed (but not parsed).
When set to 0, all packets
with IP options are dropped.
This attribute can have two
values: 0 or 1.

ip_reassembly 1 Integer Reassemble incoming
fragmented IP packets.

ip_frag 1 Integer Fragment outgoing IP
packets if their size exceeds
MTU.

ip_reass_max_pbufs 128 Integer Reassembly pbuf queue
length.

ip_frag_max_mtu 1500 Integer Assumed max MTU on any
interface for IP fragmented
buffer.

ip_default_ttl 255 Integer Global default TTL used by
transport layers.

Configuring ICMP Options
The following table describes the parameter for ICMP protocol option. Default values work well
unless application tuning is required.

For GigE cores (for Zynq and Zynq MPSoC) there is no support for ICMP in the hardware.

Attribute Default Type Description
icmp_ttl 255 Integer ICMP TTL value.

Configuring IGMP Options
The IGMP protocol is supported by lwIP stack. When set true, the following option enables the
IGMP protocol.

Attribute Default Type Description
imgp_options false Boolean Specify whether IGMP is

required.

Chapter 2: Using lwIP

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=13

Configuring UDP Options
The following table describes UDP protocol options. Default values work well unless application
tuning is required.

Attribute Default Type Description
lwip_udp true Boolean Specify whether UDP is

required.

udp_ttl 255 Integer UDP TTL value.

Configuring TCP Options
The following table describes the TCP protocol options. Default values work well unless
application tuning is required.

Attribute Default Type Description
lwip_tcp true Boolean Require TCP.

tcp_ttl 255 Integer TCP TTL value.

tcp_wnd 2048 Integer TCP Window size in bytes.

tcp_maxrtx 12 Integer TCP Maximum
retransmission value.

tcp_synmaxrtx 4 Integer TCP Maximum SYN
retransmission value.

tcp_queue_ooseq 1 Integer Accept TCP queue segments
out of order. Set to 0 if your
device is low on memory.

tcp_mss 1460 Integer TCP Maximum segment size.

tcp_snd_buf 8192 Integer TCP sender buffer space in
bytes.

Configuring DHCP Options
The DHCP protocol is supported by lwIP stack. The following table describes DHCP protocol
options. Default values work well unless application tuning is required.

Attribute Default Type Description
lwip_dhcp false Boolean Specify whether DHCP is

required.

dhcp_does_arp_check false Boolean Specify whether ARP checks
on offered addresses.

Chapter 2: Using lwIP

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=14

Configuring the Stats Option
lwIP stack has been written to collect statistics, such as the number of connections used; amount
of memory used; and number of semaphores used, for the application. The library provides the
stats_display() API to dump out the statistics relevant to the context in which the call is used. The
stats option can be turned on to enable the statistics information to be collected and displayed
when the stats_display API is called from user code. Use the following option to enable collecting
the stats information for the application.

Attribute Description Type Default
lwip_stats Turn on lwIP Statistics int 0

Configuring the Debug Option
lwIP provides debug information. The following table lists all the available options.

Attribute Default Type Description
lwip_debug false Boolean Turn on/off lwIP debugging.

ip_debug false Boolean Turn on/off IP layer
debugging.

tcp_debug false Boolean Turn on/off TCP layer
debugging.

udp_debug false Boolean Turn on/off UDP layer
debugging.

icmp_debug false Boolean Turn on/off ICMP protocol
debugging.

igmp_debug false Boolean Turn on/off IGMP protocol
debugging.

netif_debug false Boolean Turn on/off network
interface layer debugging.

sys_debug false Boolean Turn on/off sys arch layer
debugging.

pbuf_debug false Boolean Turn on/off pbuf layer
debugging

Chapter 2: Using lwIP

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=15

Chapter 3

LwIP Library APIs
The lwIP library provides two different APIs: RAW API and Socket API.

Raw API
The Raw API is callback based. Applications obtain access directly into the TCP stack and vice-
versa. As a result, there is no extra socket layer, and using the Raw API provides excellent
performance at the price of compatibility with other TCP stacks.

Xilinx Adapter Requirements when using the RAW API

In addition to the lwIP RAW API, the Xilinx adapters provide the xemacif_input utility
function for receiving packets. This function must be called at frequent intervals to move the
received packets from the interrupt handlers to the lwIP stack. Depending on the type of packet
received, lwIP then calls registered application callbacks. The <Vitis_install_path>/sw/
ThirdParty/sw_services/lwip211/src/lwip-2.1.1/doc/rawapi.txt file describes
the lwIP Raw API.

LwIP Performance

The following table provides the maximum TCP throughput achievable by FPGA, CPU, EMAC,
and system frequency in RAW modes. Applications requiring high performance should use the
RAW API.

FPGA CPU EMAC System Frequency
Max TCP

Throughput in
RAW Mode (Mbps)

Virtex MicroBlaze axi-ethernet 100 MHz RX Side: 182 TX Side:
100

Virtex MicroBlaze xps-ll-temac 100 MHz RX Side: 178 TX Side:
100

Virtex MicroBlaze xps-ethernetlite 100 MHz RX Side: 50 TX Side: 38

Chapter 3: LwIP Library APIs

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=16

RAW API Example

Applications using the RAW API are single threaded. The following pseudo-code illustrates a
typical RAW mode program structure.

int main()
{
 struct netif *netif, server_netif;
 ip_addr_t ipaddr, netmask, gw;

 unsigned char mac_ethernet_address[] =
 {0x00, 0x0a, 0x35, 0x00, 0x01, 0x02};

 lwip_init();

 if (!xemac_add(netif, &ipaddr, &netmask,
 &gw, mac_ethernet_address,
 EMAC_BASEADDR)) {
 printf(“Error adding N/W interface\n\r”);
 return -1;
 }
 netif_set_default(netif);

 platform_enable_interrupts();

 netif_set_up(netif);

 start_application();

 while (1) {
 xemacif_input(netif);

 transfer_data();
 }
}

Socket API
The lwIP socket API provides a BSD socket-style API to programs. This API provides an execution
model that is a blocking, open-read-write-close paradigm.

Chapter 3: LwIP Library APIs

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=17

Xilinx Adapter Requirements when using the Socket API

Applications using the Socket API with Xilinx adapters need to spawn a separate thread called
xemacif_input_thread. This thread takes care of moving received packets from the interrupt
handlers to the tcpip_thread of the lwIP. Application threads that use lwIP must be created
using the lwIP sys_thread_new API. Internally, this function makes use of the appropriate
thread or task creation routines provided by XilKernel or FreeRTOS.

Xilkernel/FreeRTOS scheduling policy when using the Socket API

lwIP in socket mode requires the use of the Xilkernel or FreeRTOS, which provides two policies
for thread scheduling: round-robin and priority based. There are no special requirements when
round-robin scheduling policy is used because all threads or tasks with same priority receive the
same time quanta. This quanta is fixed by the RTOS (Xilkernel or FreeRTOS) being used. With
priority scheduling, care must be taken to ensure that lwIP threads or tasks are not starved. For
Xilkernel, lwIP internally launches all threads at the priority level specified in
socket_mode_thread_prio. For FreeRTOS, lwIP internally launches all tasks except the main
TCP/IP task at the priority specified in socket_mode_thread_prio. The TCP/IP task in
FreeRTOS is launched with a higher priority (one more than priority set in
socket_mode_thread_prio). In addition, application threads must launch
xemacif_input_thread. The priorities of both xemacif_input_thread, and the lwIP
internal threads (socket_mode_thread_prio) must be high enough in relation to the other
application threads so that they are not starved.

Socket API Example

XilKernel-based applications in socket mode can specify a static list of threads that Xilkernel
spawns on startup in the Xilkernel Software Platform Settings dialog box. Assuming that
main_thread() is a thread specified to be launched by XIlkernel, control reaches this first
thread from application main after the Xilkernel schedule is started. In main_thread, one more
thread (network_thread) is created to initialize the MAC layer. For FreeRTOS (Zynq, Zynq
Ultrascale+, and Versal processor systems) based applications, once the control reaches
application main routine, a task (can be termed as main_thread) with an entry point function as
main_thread() is created before starting the scheduler. After the FreeRTOS scheduler starts, the
control reaches main_thread(), where the lwIP internal initialization happens. The application
then creates one more thread (network_thread) to initialize the MAC layer. The following
pseudo-code illustrates a typical socket mode program structure.

void network_thread(void *p)
{
 struct netif *netif;
 ip_addr_t ipaddr, netmask, gw;

 unsigned char mac_ethernet_address[] =
 {0x00, 0x0a, 0x35, 0x00, 0x01, 0x02};

 netif = &server_netif;

Chapter 3: LwIP Library APIs

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=18

 IP4_ADDR(&ipaddr,192,168,1,10);
 IP4_ADDR(&netmask,255,255,255,0);
 IP4_ADDR(&gw,192,168,1,1);

 if (!xemac_add(netif, &ipaddr, &netmask,
 &gw, mac_ethernet_address,
 EMAC_BASEADDR)) {
 printf(“Error adding N/W interface\n\r”);
 return;
 }
 netif_set_default(netif);

 netif_set_up(netif);

 sys_thread_new(“xemacif_input_thread”, xemacif_input_thread,
 netif,
 THREAD_STACKSIZE, DEFAULT_THREAD_PRIO);

 sys_thread_new(“httpd” web_application_thread, 0,
 THREAD_STACKSIZE DEFAULT_THREAD_PRIO);
}

int main_thread()
{

 lwip_init();

 sys_thread_new(“network_thread” network_thread, NULL,
 THREAD_STACKSIZE DEFAULT_THREAD_PRIO);

 return 0;
}

Using the Xilinx Adapter Helper Functions
The Xilinx adapters provide the following helper functions to simplify the use of the lwIP APIs.

Table 1: Quick Function Reference

Type Name Arguments
void xemacif_input_thread

void

struct netif * xemac_add
void

void lwip_init
void

Chapter 3: LwIP Library APIs

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=19

Table 1: Quick Function Reference (cont'd)

Type Name Arguments
int xemacif_input

void

void xemacpsif_resetrx_on_no_rxdata
void

Functions

xemacif_input_thread

In the socket mode, the application thread must launch a separate thread to receive the input
packets. This performs the same work as the RAW mode function, xemacif_input() , except
that it resides in its own separate thread; consequently, any lwIP socket mode application is
required to have code similar to the following in its main thread:

Note: For Socket mode only.

sys_thread_new(“xemacif_input_thread”,

 xemacif_input_thread
 , netif, THREAD_STACK_SIZE, DEFAULT_THREAD_PRIO);

The application can then continue launching separate threads for doing application specific tasks.
The xemacif_input_thread() receives data processed by the interrupt handlers, and passes
them to the lwIP tcpip_thread.

Prototype

void xemacif_input_thread(struct netif *netif);

Returns

xemac_add

The xemac_add() function provides a unified interface to add any Xilinx EMAC IP as well as
GigE core. This function is a wrapper around the lwIP netif_add function that initializes the
network interface ‘netif’ given its IP address ipaddr, netmask, the IP address of the gateway, gw,
the 6 byte ethernet address mac_ethernet_address, and the base address, mac_baseaddr, of the
axi_ethernetlite or axi_ethernet MAC core.

Chapter 3: LwIP Library APIs

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=20

Prototype

struct netif * xemac_add(struct netif *netif, ip_addr_t *ipaddr, ip_addr_t
*netmask, ip_addr_t *gw, unsigned char *mac_ethernet_address, unsigned
mac_baseaddr);

lwip_init

Initialize all modules. Use this in NO_SYS mode. Use tcpip_init() otherwise.

This function provides a single initialization function for the lwIP data structures. This replaces
specific calls to initialize stats, system, memory, pbufs, ARP, IP, UDP, and TCP layers.

Prototype

void lwip_init(void);

xemacif_input

The Xilinx lwIP adapters work in interrupt mode. The receive interrupt handlers move the packet
data from the EMAC/GigE and store them in a queue. The xemacif_input() function takes
those packets from the queue, and passes them to lwIP; consequently, this function is required
for lwIP operation in RAW mode. The following is a sample lwIP application in RAW mode.

Note: For RAW mode only.

 while (1) {

 xemacif_input
 (netif);

}

Note: The program is notified of the received data through callbacks.

Prototype

int xemacif_input(struct netif *netif);

Chapter 3: LwIP Library APIs

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=21

Returns

xemacpsif_resetrx_on_no_rxdata

There is an errata on the GigE controller that is related to the Rx path. The errata describes
conditions whereby the Rx path of GigE becomes completely unresponsive with heavy Rx traffic
of small sized packets. The condition occurrence is rare; however a software reset of the Rx logic
in the controller is required when such a condition occurs. This API must be called periodically
(approximately every 100 milliseconds using a timer or thread) from user applications to ensure
that the Rx path never becomes unresponsive for more than 100 milliseconds.

Note: Used in both Raw and Socket mode and applicable only for the Zynq-7000 devices, Zynq UltraScale+
MPSoC, and Versal processors and the GigE controller

Prototype

void xemacpsif_resetrx_on_no_rxdata(struct netif *netif);

Returns

Chapter 3: LwIP Library APIs

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=22

Appendix A

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

Appendix A: Additional Resources and Legal Notices

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 23Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=23

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2020-2021 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective
owners.

Appendix A: Additional Resources and Legal Notices

UG650 (v2021.1) June 16, 2021 www.xilinx.com
LwIP 2.1.1 Library v1.5 24Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG650&Title=Xilinx%20Standalone%20Library%20Documentation&releaseVersion=2021.1&docPage=24

	Xilinx Standalone Library Documentation
	Table of Contents
	Ch. 1: Introduction
	Features
	References

	Ch. 2: Using lwIP
	Overview
	Setting up the Hardware System
	Setting up the Software System
	Configuring lwIP Options
	Customizing lwIP API Mode
	Configuring Xilinx Adapter Options
	Configuring Memory Options
	Configuring Packet Buffer (Pbuf) Memory Options
	Configuring ARP Options
	Configuring IP Options
	Configuring ICMP Options
	Configuring IGMP Options
	Configuring UDP Options
	Configuring TCP Options
	Configuring DHCP Options
	Configuring the Stats Option
	Configuring the Debug Option

	Ch. 3: LwIP Library APIs
	Raw API
	Socket API
	Using the Xilinx Adapter Helper Functions
	Functions
	xemacif_input_thread
	xemac_add
	lwip_init
	xemacif_input
	xemacpsif_resetrx_on_no_rxdata

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	Please Read: Important Legal Notices

